Abstract
Microbial biofilms are ubiquitous within porous media and the dynamics of their growth influence surface and subsurface flow patterns which impacts the physical properties of porous media and large-scale transport of solutes. A two-dimensional pore-scale numerical model was used to evaluate the impact of biofilm-induced flow heterogeneities on conservative transport. Our study integrates experimental biofilm images of Paenibacillus 300A strain in a microfluidic device packed with cylindrical grains in a hexagonal distribution, with mathematical modeling. Biofilm is represented as a synthetic porous structure with locally varying physical properties that honors the impact of biofilm on the porous medium. We find that biofilm plays a major role in shaping the observed conservative transport dynamics by enhancing anomalous characteristics. More specifically, when biofilm is present, the pore structure in our geometry becomes more spatially correlated. We observe intermittent behavior in the Lagrangian velocities that switches between fast transport periods and long trapping events. Our results suggest that intermittency enhances solute spreading in breakthrough curves which exhibit extreme anomalous slope at intermediate times and very marked late solute arrival due to solute retention. The efficiency of solute retention by the biofilm is controlled by a transport regime which can extend the tailing in the concentration breakthrough curves. These results indicate that solute retention by the biofilm exerts a strong control on conservative solute transport at pore-scale, a role that to date has not received enough attention.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.