Abstract

Biodiversity can effectively actuate ecosystem multifunctionality, and the relationships primarily depend on the circumstances. However, the relative functional importance of particular components in complex biocoenosis, such as abundant and rare taxa, influencing soil multifunctionality changes across environmental gradients and remains limited understanding. Here, 152 independent soil samples from aridity (from 0.47 to 0.97) and elevation (from 142 to 2766 m a.s.l.) gradients across steppes of northern China were collected and analyzed to obtain information of soil bacterial community and soil functional properties, which were further utilized to evaluate how the relationships between the diversities of abundant and rare species and soil multifunctionality respond to changes in aridity and elevation. At aridity and elevation levels of ~0.85 and ~1100 m a.s.l., respectively, abrupt variations of the connections between soil multifunctionality and diversities of abundant or rare taxa occurred. Moreover, the results revealed a significantly positive effect of richness of abundant taxa on soil multifunctionality in the less arid and higher elevation areas, whereas a strongly positive relationship was exhibited between diversity of rare species and soil multifunctionality in the more arid and higher elevation regions. Specially, regardless of higher or lower aridity levels, both contributions of abundant and rare taxa to soil multifunctionality were extremely weak in the lower elevation regions. Our study highlights the importance of aridity and elevation impacting the contributions of abundant and rare taxa in regard to soil multifunctionality, which can positively provide some theoretical bases for promoting ecosystem sustainability and productivity under global climate change.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.