Abstract

In several applications, a protein such as casein in dispersion form undergoes multiple processing steps including drying. In this work, the rheological and microstructural features of casein dispersions concentrated by evaporation of the solvent (drying dispersions) were studied in comparison with those of equal concentrations of the as-prepared dispersions without drying. The molecular assembly of casein is affected by drying along with the conformational composition changes in the secondary structures such as α-helix, β-sheets, turns and random structures of the protein. Modeling of the rheological data indicates that these changes also affect the packing of casein molecular assemblies and these molecular assemblies in alkaline dispersions can behave as soft deformable particles. During drying, casein dispersions show prominent shear thinning for concentrations higher than 20 wt% along with the prevalence of α-helices and β-sheets. In comparison, the as-prepared dispersions show different microstructural features, and therefore different rheological responses. A detailed analysis shows that alkalinity changes during drying is the crucial factor controlling the microstructural changes of the soft casein particles and hence the rheology.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call