Abstract

The objective of this study was to develop new vinyl flooring formulations with increased resistance to fungi and microorganisms attack, by using plasticizers having a chemical composition different from that of common di-ethylhexyl phthalate (DOP). It is suspected that during the vinyl flooring life service, the attack of fungi and microorganisms leads to the degradation of DOP and the release of some volatile organic compounds (VOC). For this reason the new materials were formulated with plasticizers having chemical composition different of that of DOP i.e.: diethyleneglycol dibenzoate (2–45), tricresyl phosphate (Lindol) and phenol alkylsulphonic ester (Mesamoll). For the same reason in the new flooring formulations the vinyl polymer, vinyl chloride-vinyl acetate copolymer (VC-VAc), was partially replaced with lignin (L) a natural polymer and major component of wood and vascular plants. Besides its other functions in wood, L imparts resistance to the most microorganisms attack. An organosolv lignin Alcell lignin (AL) was utilized as partial replacement of VC-VAc copolymer. The influence of the new plasticizers, as well as the influence of the partial replacement of VC-VAc copolymer with L on the resistance of the new formulations to fungal attack was evaluated following a standard procedure given in ASTM G 21–2002 “Determining Resistance of Synthetic Polymeric Materials to Fungi”. The evaluation has been undertaken for controls (formulated without AL) and blends (formulated with 20 parts AL) specimens. Test specimens were inoculated with a mixture of five fungi. Following 28 days of incubation at 28°C and 95% relative humidity, the specimens were examinated visual and under the microscope and rated for fungal growth. Weight loss, changes in mechanical properties and changes in glass transition temperature due to the effect of biodeterioration were also determined. Although each plasticizer has a specific resistance to hydrolysis due to differences among ester groups, the visible effects of fungal attack, in formulations without AL, is similar for all plasticized controls, with the exception of formulations incorporating diethyleneglycol dibenzoate (2–45) in which a higher degree of biodegradation was always present. Based on the weight loss of specimens formulated without AL, their resistance to fungal attack can be rated as follows: $$\hbox{Lindol} > \hbox{Mesamoll} \ge \hbox{DOP}> 2-45$$ . The same rating is applicable for blend specimens. The results have demonstrated that each particular AL-plasticizer-additives formulation has its specific mechanism of biodegradation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.