Abstract

In this paper, an alternative renewable energy concept, i.e. concept of solar power plant with short diffuser (SPD) was investigated through the development of a numerical model with simplifications due to general complexity. The mentioned alternative energy concept is based on the possibility of utilizing an artificially created and maintained convective vortex system in the surrounding atmosphere. Finally, it is assumed that the specific vortex system would able to deliver useful mechanical work which then can be used to produce carbon-free electricity via turbine assembly. Preliminary numerical results were presented as a case study for SPD plants using a solar collector diameter of 600m with a diffuser of 30m in maximal and 25 in minimal diameter. According to the obtained numerical simulations, for the considered case, it was found that pressure potential should be below 5kPa in general (with mass air flow rates less than 31t/s) in order to enable reasonable operating conditions for commercial wind turbine technologies (a specific pressure potential range was defined in order to provide reasonable parameters related to the vortex system). Namely, for pressure potentials ranging between 3.5kPa to 5.0kPa, and mass air flow rates from 26 to 31t/s, the plant would be able to deliver between 5.17MW to 16.95MW of nominal electric power output with an associated range of wind turbine operating air velocities from 30m/s to 50m/s. A comparison of the numerical results was obtained by using available observation data and reasonable matching was achieved, i.e. partial validation of the developed numerical model due to the non-existence of an experimental plant. Current research related to SPD concept development is still in the stage of numerically based experiments, which are crucial and important towards the consideration of a prototype plant. Therefore, the gained and presented findings in this paper are certainly valuable for the further development of the herein analyzed alternative renewable energy concept and provide a base for the final experimental realization of a prototype plant.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.