Abstract
The use of an electrical network as close as possible to its limits can lead to its instability in the event of a high amplitude disturbance. The damping of system oscillations can be achieved by conventional means of voltage and speed regulation but also by FACTS (Flexible AC Transmission Systems) devices, which are increasingly used in power networks. In this work, optimal control coordination between a hybrid power flow controller and a three-level inverter was used to improve the transient stability of a transmission line. The UPFC is a combination of a serial compensator (SSSC) and a parallel compensator (STATCOM) both connected to a DC-LINK DC bus. The SSSC acts as a voltage source for the network and injects a voltage that can be adjusted in phase and amplitude in addition to the network voltage; the STATCOM acts as a current source. The approach used is tested in the Matlab Simulink environment on a single machine network. Optimal controller tuning gives a better transient stability improvement by reducing the transport angle oscillations from 248.17% to 9.85%.
Highlights
Electricity is a basic energy need whose access is recognized as a right
The network has a very specific transport angle δ. This angle which corresponds to the equality between the electric power and the mechanic power according to the following formula: H
The development of power electronics has improved the management of electrical networks by introducing a new concept by the power transmission systems called FACTS, with which the control of the active and reactive power flow, the increase of the load capacities of the lines as well as the improvement of the stability of the network are achieved and performed by the injection of the voltages of the converters designed with modern static switches
Summary
Electricity is a basic energy need whose access is recognized as a right Electrical networks until the last few years are controlled mechanically (capacitor bank, inductor, phase-shifting transformer...) These during the problems of wear and their relative slowness make them insufficient to respond effectively to these remarkable requirements. FACTS systems are recently discovered compensators that combine capacitor banks and inductors coils with power electronics converters. These compensators, depending on their connection to the grid, are distinguished into shunt, series and hybrid compensators such as: STATCOM, SSSC, UPFC respectively. Our work is based on the use of this universal controller but controlled by a three-level inverter applied to a highly disturbed network in the optimization of the transient stability of electric power transmission networks
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.