Abstract

Sulfate-rich acid waters produced by oxidation of sulfide minerals enhance U mobility around U ores and U-bearing radioactive waste. Upon evaporation, several secondary uranyl minerals, including many uranyl sulfates, precipitate from these waters. The zippeite-group of minerals is one of the most common and diverse in such settings. To decipher the nature and crystal chemistry of the zippeite-group, the crystal structure of a new natural hydrated Mg uranyl sulfate related to Mgzippeite was determined. The mineral is named marecottite after the type locality, the La Creusaz U prospect near Les Marécottes, Western Swiss Alps. Marecottite is triclinic, P1, with a = 10.815(4), b = 11.249(4), c = 13.851(6) Å, a = 66.224(7), b = 72.412(7), and g = 69.95(2)°. The ideal structural formula is Mg 3 (H 2 O) 18 [(UO 2 ) 4 O 3 (OH)(SO 4 ) 2 ] 2 (H 2 O) 10 . The crystal structure of marecottite contains uranyl sulfate sheets composed of chains of edge-sharing uranyl pentagonal bipyramids that are linked by vertex-sharing with sulfate tetrahedra. The uranyl sulfate sheets are topologically identical to those in zippeite, K(UO 2 ) 2 (SO 4 )O 2 ·2H 2 O. The zippeite-type sheets alternate with layers containing isolated Mg(H 2 O) 6 octahedra and uncoordinated H 2 O groups. The uranyl sulfate and Mg layers are linked by hydrogen bonding only. Magnesium-zippeite is redefined as Mg(H 2 O) 3.5 (UO 2 ) 2 (SO 4 )O 2 , based on comparison of the powder X-ray diffraction pattern of micro-crystalline co-type material with the pattern of a synthetic phase. Magnesium-zippeite contains zippeite-type uranyl sulfate sheets with Mg located between the layers, where it is in octahedral coordination. In Mg-zippeite, distorted Mg octahedra are linked by sharing vertices, resulting in dimers. The apices of the Mg octahedra correspond to two O atoms of uranyl ions, and four H 2 O groups. Magnesium-zippeite and marecottite co-exist, sometimes in the same sample, at Lucky Strike no. 2 mine, Emery County, Utah (type locality of Mg-zippeite), at Jáchymov, Czech Republic, and at La Creusaz. This study provides insight into the complexity of the zippeite-group minerals containing divalent cations, where different arrangements in the interlayers result in different unit cells and space groups.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.