Abstract

Sphingomonas sp. strain TTNP3 has been previously described as a bacterium that is capable of degrading the technical mixture of nonylphenol (NP) isomers and also the 4(3',5'-dimethyl-3'-heptyl)-phenol single isomer of NP. Until recently, 3,5-dimethyl-3-heptanol was the only reported metabolite of 4(3',5'-dimethyl-3'-heptyl)-phenol. A short time ago, the detection of an intracellular metabolite resulting from the oxidation of 4(3',5'-dimethyl-3'-heptyl)-phenol which was identified as 2(3,5-dimethyl-3-heptyl)-benzenediol has been reported. A decisive element for this identification was the occurrence of some slight differences with the two most probable metabolites i.e. 4(3',5'-dimethyl-3'-heptyl)-resorcinol and 4(3',5'-dimethyl-3'-heptyl)-catechol. These facts led us to hypothesise some NIH shift mechanisms explaining the formation of 2(3',5'-dimethyl-3'-heptyl)-benzenediol. In the present work, we describe the steps that led to the detection of these metabolites in the intracellular fraction of Sphingomonas sp. strain TTNP3. The formation of analogous intracellular metabolites resulting from the degradation of the technical mixture of NP is reported. To further elucidate these degradation products, studies were carried out with cells grown with 4(3',5'-dimethyl-3'-heptyl)-phenol as sole carbon source. The description of the syntheses of reference compounds, i.e. 4(3',5'-dimethyl-3'-heptyl)-resorcinol and 4(3',5'-dimethyl-3'-heptyl)-catechol and their comparative analyses with the intermediates of the degradation of 4(3',5'-dimethyl-3'-heptyl)-phenol are presented.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.