Abstract
BACKGROUNDTrimethylamine N-oxide (TMAO) is emerging as a new generation of metabolites related to the activation of inflammatory reactions in the macrophages during atherosclerosis. Stress-activation of cell surface toll-like receptors (TLRs) as well as nicotinamide adenine dinucleotide phosphate (NADPH) oxidases (NOX) is also assumed to be involved in TMAO-induced inflammatory reaction in the macrophages. To elucidate the possible contribution of TLRs and NOX to the mentioned signaling pathway, we aimed to simultaneously evaluate the expression level of TLR2, TLR6, and NOX2 in TMAO-treated macrophages.METHODS2.5 × 106 cells of U937-derived macrophages were treated in triplicates with different concentrations (37.5, 75, 150, and 300 μM) of TMAO for 24 hours. The cells were also treated with tunicamycin (TUN), as a positive control of stress. Normal control group (CTR) cells received no treatment. The viability of treated cells was checked by 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide, a tetrazole (MTT) assay. Reverse transcription-quantitative polymerase chain reaction (RT-qPCR) was also used to evaluate the relative expression (fold change) of TLR2, TLR6, and NOX2 at messenger ribonucleic acid (mRNA) levels. One-way analysis of variance (ANOVA) with post-hoc Dunnett’s test was performed to compare every mean with that of the control.RESULTSNo cell death occurred because of treatments. Dose of 300 μM of TMAO significantly increased the relative expression of both TLR2 and NOX2 compared to the CTR cells (P < 0.001 for both). The elevation of TLR6 was not statistically significant in all groups of TMAO-treated cells (P > 0.050).CONCLUSIONOur results provide documentation supporting contribution of TLR2 and NOX2 to previously described inflammatory reactions induced by TMAO in macrophages. In addition, they may clarify the proatherogenic role of TMAO in foam cell formation as well as abnormal activation of macrophages during atherosclerosis.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.