Abstract

The possible contributions of tidal heating to lunar thermal history are investigated. Analytic determinations of tidal dissipation in a homogeneous, incompressible Moon and in a two-layer Moon with a soft core and rigid mantle are given as a function of position in the Moon and as a function of Earth-Moon separation. The most recent information on the historical values of the lunar obliquity is employed, and we present results for the constant values of orbital eccentricity of e = 0.0 and e = 0.055. For a simplified orbital evolution and a dissipation factor Q = 100, the total increase in the mean lunar temperature for the homogeneous case does not exceed several tens of degrees. For the two-layer models the local dissipation may be enhanced over that of the homogeneous Moon by a factor of 5 for a core radius of 0.5 lunar radii and by a factor of 100 for a core radius of 0.95 lunar radii. The corresponding factors for the total dissipation are 3 and 15 for the two values of core radii, respectively. We conclude that tidal contributions to lunar thermal history are probably not important. But under special circumstances the enhanced dissipation in a two-layer Moon could have led to a spectacular thermal event.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.