Abstract

Cotton (Gossypium hirsutum L.) is a species in which most nitrate is assimilated in the green shoot. A physiological role for the small amount of nitrate reductase activity in the roots can be questioned on the basis of relative magnitude. In this investigation, cotton plants were grown on nutrient solutions containing either 1 or 5 mM nitrate, and balance sheets were developed for the transport and metabolism of nitrate and reduced nitrogen in the root and shoot during exponential growth. At either nitrate level, assimilation in the roots was adequate to supply all the nitrogen for root growth. However, some of the reduced nitrogen was exported in the xylem, leaving a net deficit of about 10% at 1 mM nitrate and 36% at 5 mM nitrate. This deficit was presumably satisfied by reduced nitrogen from the shoot. Thus, at these two nitrate concentrations, root growth apparently depended more upon nitrogen assimilated in the roots themselves than upon nitrogen from the shoot. The different fates of nitrogen assimilated in the root and in the shoot may be related to the demonstrated differential regulation of nitrate reductase activity in these two sites.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call