Abstract

We have developed a novel method for monitoring the mitochondrial permeability transition in single intact hepatocytes during injury with t-butylhydroperoxide (t-BuOOH). Cultured hepatocytes were loaded with the fluorescence probes, calcein and tetramethylrhodamine methyl ester (TMRM). Depending on loading conditions, calcein labelled the cytosolic space exclusively and did not enter mitochondria or it stained both cytosol and mitochondria. TMRM labelled mitochondria as an indicator of mitochondrial polarization. Fluorescence of two probes was imaged simultaneously using laser-scanning confocal microscopy. During normal incubations, TMRM labelled mitochondria indefinitely (longer than 63 min), and calcein did not redistribute between cytosol and mitochondria. These findings indicate that the mitochondrial permeability transition pore ('megachannel') remained closed continuously. After addition of 100 microM t-BuOOH, mitochondria filled quickly with calcein, indicating the onset of mitochondrial permeability transition. This event was accompanied by mitochondrial depolarization, as shown by loss of TMRM. Subsequently, the concentration of ATP declined and cells lost viability. Trifluoperazine, a phospholipase inhibitor that inhibits the permeability transition in isolated mitochondria, prevented calcein redistribution into mitochondria, mitochondrial depolarization, ATP depletion and cell death. Carbonyl cyanide m-chlorophenylhydrazone (CCCP), a mitochondrial uncoupler, also rapidly depolarized mitochondria of intact hepatocytes but did not alone induce a permeability transition. Trifluoperazine did not prevent ATP depletion and cell death after the addition of CCCP. In conclusion, the permeability transition pore does not 'flicker' open during normal incubation of hepatocytes but remains continuously closed. Moreover, mitochondrial depolarization per se does not cause the permeability transition in intact cells. During oxidative stress, however, a permeability transition occurs quickly which leads to mitochondrial depolarization and cell death.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.