Abstract
Previous studies have documented an abrupt decrease of tropical cyclone (TC) genesis frequency over the western North Pacific (WNP) since 1998. In this study, results from an objective clustering analysis demonstrated that this abrupt decrease is primarily related to the decrease in a cluster of TCs (C1) that mostly formed over the southeastern WNP, south of 15°N and east of the Philippines, and possessed long tracks. Further statistical analyses based on both best track TC data and global reanalysis data during 1980–2015 revealed that the genesis of C1 TCs was significantly modulated by the interdecadal Pacific oscillation (IPO), whose recent negative phase since 1998 corresponded to a La Niña–like sea surface temperature anomaly (SSTA) pattern, which strengthened the Walker circulation in the tropical Pacific and weakened the WNP monsoon trough, suppressing genesis of C1 TCs in the southeastern WNP and predominantly contributing to the decrease in TC genesis frequency over the entire WNP basin. These findings were further confirmed by results from similar analyses based on longer observational datasets and also the outputs from a 500-yr preindustrial general circulation model experiment using the Geophysical Fluid Dynamics Laboratory (GFDL) Coupled Model, version 3. Additional analysis indicates that the decrease in C1 TC genesis frequency in the recent period was dominated during August–October, with the largest decrease in October.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.