Abstract

Because the perceived weight of objects may be affected by various nonweight properties, such as their size and the density of their surface material, relative weight is sometimes misperceived (the size-weight illusion and the material-weight illusion, respectively). A widely accepted explanation for weight illusions is provided by the so-called expectation model, according to which the perceived weight stems from the contrast between the actual and expected weights. In the present study, we varied both the surface material and the size of stimuli, while keeping constant their physical weights. In Experiment 1, the participants lifted the stimuli by grasping them on opposite sides, whereas in Experiment 2 they lifted them by using a string that was attached to their top surface. We used a variant of the random conjoint measurement paradigm to obtain subjective interval scales of the contributions of surface material and size to the expected and the perceived weight of the stimuli. Inconsistently with the predictions from the expectation model, we found, in both experiments, that the surface material contributed more than the size to the expected weight, whereas the size contributed more than the surface material to the perceived weight. The results support the hypothesis that perceived weight may depend on implicit, rather than explicit, weight expectations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call