Abstract

Abstract. The photogrammetric 3D stereo reconstruction from pairs of strereo images is rising interest in the past few years in space field downstream. Nowadays, it is conceivable that a large production of DSMs from satellite images can become the primary source of 3D information on a global scale. However, in urban areas, DSMs produced with current technology suffer from poor quality. Indeed, even using very high resolution (VHR) images, there is too little information to generate disparity maps that reproduce very well defined shaped objects such as buildings.To address this issue, one solution may be to artificially increase image resolution beyond the sensor limits. Super resolution (SR) algorithms are designed to recover high frequencies, introducing significant information in a scene characterized by strong and frequent discontinuities such as a city. State-of-the-art methods relying on Deep Learning have shown remarkable results in this sense. The aim of this work is therefore to assess the contribution of single image SR Deep Learning techniques to the stereo matching and DSMs generation in an urban context, highlighting potential advantages and limitations that can show up when introducing such a technology in a multi-view stereo pipeline. The proposed contributions are: a methodology for super resolution of VHR data that takes into account realistic simulation of a satellite product; a testbed for the evaluation of the impact of super resolution on 3D photogrammetric reconstruction; a local analysis of the consequences of deep learning SR of VHR images on stereo matching.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.