Abstract
Transcriptional regulation is associated with complicated mechanisms including multiple molecular interactions and collaborative drive. Long noncoding RNAs (lncRNAs) have highly structured characteristics and play vital roles in the regulation of transcription in organisms. However, the specific contributions of conformation feature and underlying molecular mechanisms are still unclear. In the present paper, a hypothesis regarding molecular structure effect is presented, which proposes that lncRNAs fold into a complex spatial architecture and act as a skeleton to recruit transcription factors (TF) targeted binding, and which is involved in cooperative regulation. A candidate set of TF-lncRNA coregulation was constructed, and it was found that structural accessibility affected molecular binding force. In addition, transcription factor binding site (TFBS) regions of myopia-related lncRNA transcripts were disturbed, and it was discovered that base mutations affected the occurrence of significant molecular allosteric changes in important elements and variable splicing regions, mediating the onset and development of myopia. The results originated from structureomics and interactionomics and created conditions for systematic research on the mechanisms of structure-mediated TF-lncRNA coregulation in transcriptional regulation. Finally, these findings will help further the understanding of key regulatory roles of molecular allostery in cell physiological and pathological processes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.