Abstract

In the Peierls state very thin samples of TaS_3 (cross-section area \sim 10^{-3} mkm^2) are found to demonstrate smearing of the I-V curves near the threshold field. With approaching the Peierls transition temperature, T_P, the smearing evolves into smooth growth of conductance from zero voltage interpreted by us as the contribution of fluctuations to the non--linear conductance. We identify independently the fluctuation contribution to the linear conductance near T_P. Both linear and non-linear contributions depend on temperature with close activation energies \sim (2 - 4) x 10^3 K and apparently reveal the same process. We reject creep of the {\it continuous} charge-density waves (CDWs) as the origin of this effect and show that it is spontaneous phase slippage that results in creep of the CDW. A model is proposed accounting for both the linear and non-linear parts of the fluctuation conduction up to T_P.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.