Abstract

1. The external intercostal muscles have greater post-inspiratory activity than the parasternal intercostal muscles and are more abundantly supplied with muscle spindles. In the present study, the hypothesis was tested that spindle afferent inputs play a major role in determining this activity. 2. The electrical activity of the external and parasternal intercostal muscles in the rostral interspaces was recorded in anaesthetized spontaneously breathing dogs, and the ribs were manipulated so as to alter their normal caudal displacement and the normal lengthening of the muscles in early expiration. 3. Post-inspiratory activity in the external intercostal muscles showed a reflex decrease when the caudal motion of the ribs and the lengthening of the muscles was impeded, and it showed a reflex increase when the rate of caudal rib motion and muscle lengthening was increased. In contrast, the small post-inspiratory activity in the parasternal intercostal muscles remained unchanged. 4. When the two ribs making up the interspace investigated were locked to keep muscle length constant, post-inspiratory activity in the external intercostal muscles was reduced and no longer responded to cranial rib manipulation. 5. These observations confirm that afferent inputs from muscle receptors, presumably muscle spindles, are a primary determinant of post-inspiratory activity in the canine external intercostal muscles. In anaesthetized animals, the contribution of central control mechanisms to this activity is small.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call