Abstract

To determine the function and serum levels of soluble forms of programmed death 1 (sPD-1) and one of its ligands, soluble PD ligand 2 (sPD-L2), in patients with systemic sclerosis (SSc) and in a mouse model of topoisomerase I (topo I)-induced SSc. Serum levels of sPD-1 and sPD-L2 in 91 patients with SSc were examined by enzyme-linked immunosorbent assay (ELISA). Expression of PD-1 and PD-L2 on T cells, B cells, and macrophages was quantified by flow cytometry. The effects of blockade of PD-1 and PD-L2 were analyzed by microfluidic ELISA (micro-ELISA), a technique that can measure very low amounts of cytokines. In addition, the effects of sPD-1 and sPD-L2 on disease progression were assessed in mice with topo I-induced SSc. Serum levels of sPD-1 and sPD-L2 were elevated in patients with SSc and correlated with the extent of fibrosis and immunologic abnormalities. Expression levels of PD-1 and PD-L2 were significantly elevated on SSc T cells, B cells, and macrophages. Micro-ELISA analysis of serum samples from patients with SSc showed that PD-L2high B cells had higher levels of interleukin-10 (IL-10) production compared with PD-L2low B cells, indicating that PD-L2 acts as a regulator of T cell cytokine production via cognate interactions with T cells and B cells. In mice with topo I-induced SSc, production of IL-10 by topo I-specific B cells in cultures with T cells and topo I protein was significantly higher than that by conventional B cells, and intraperitoneal injection of recombinant chimeric PD-1-Fc and PD-L2-Fc canceled these enhanced effects. These results suggest that sPD-1 and sPD-L2 contribute to disease development in SSc via the regulation of cognate interactions with T cells and B cells.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call