Abstract

Forest gaps are important in forest dynamics and management, but little is known about how soil fauna influence the degradation of recalcitrant litter components in different-sized forest gaps. This investigation uses litterbags with two different mesh sizes (0.04 and 3 mm) to control the meso- and microfauna entering the bags to quantify the contribution of soil fauna to the degradation of recalcitrant components (including condensed tannins, total phenol, lignin and cellulose) during litter decomposition. The experiment was conducted in seven different forest gap sizes in Pinus massoniana plantations over 1 year. One closed-canopy site (CC) and forest gap sizes of 100, 225, 400, 625, 900, 1225 and 1600 m2 were created in a P. massoniana plantation in the Sichuan basin of China; the CC was treated as the control. Cinnamomum camphora foliage from local native trees was used in all forest gap experiments. We found the following: (1) Gap size had significant effects on the degradation rates (E) of condensed tannins and lignin and on the contributions of soil fauna; medium-sized gaps also presented high degradation rates. Soil fauna obviously contributed to the degradation of recalcitrant foliar litter components in medium-sized gaps. (2) The highest contribution to degradation (40.98%) was recorded for lignin, and the lowest contribution (0.29%) was recorded for condensed tannins. The results indicate that medium-sized gaps (900 m2) were conducive to the degradation of recalcitrant litter components by soil fauna.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call