Abstract

Limited knowledge is available about the virulence mechanisms responsible for diarrheal disease caused by Salmonella typhimurium. To assess the contribution to diarrheal disease of virulence determinants identified in models of infection, we tested a collection of S. typhimurium mutants for their ability to cause enteritis in calves. S. typhimurium strains carrying mutations in the virulence plasmid (spvR), Salmonella pathogenicity island 2 (SPI-2) (spiB), or SPI-5 (sopB) caused mortality and acute diarrhea in calves. An S. typhimurium rfaJ mutant, which is defective for lipopolysaccharide outer core biosynthesis, was of intermediate virulence. Mutations in SPI-1 (hilA and prgH) or aroA markedly reduced virulence and the severity of diarrhea. Furthermore, histopathological examination of calves infected with SPI-1 or aroA mutants revealed a marked reduction or absence of intestinal lesions. These data suggest that virulence factors, such as SPI-1, which are required during intestinal colonization are more important for pathogenicity in calves than are genes required during the systemic phase of S. typhimurium infection, including SPI-2 or the spv operon. This is in contrast to the degree of attenuation caused by these mutations in the mouse.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.