Abstract

ABSTRACTThis work was conducted to study phosphorus (P) efficiency of two maize genotypes (Zea mays, L.) in calcareous soil grown in potted soil with two levels of P in soil by adding 40 and 270 mg P/kg soil. Half of the pots were inoculated with arbuscular mycorrhizal fungi (AMF) (Rhizoglomus irregulare). The maize genotypes were harvested two times at 35 and 50 days after transplanting. The plant dry matter, root length and Plant P uptake of maize genotype Hagen 1 without mycorrhizal fungi (AMF) increased significantly compared with Hagen 9 at a low P level. In contrast, there was no significant difference between two maize genotypes inoculated with AMF under the same P level. The predicted value increased rapidly with increasing P levels from about 70% up to 97% in both maize genotypes with and without mycorrhizal fungi. At a low P level, the mycorrhizae hyphae contributed by about 31.6% and 30.2% of the predicted total P uptake in maize genotype Hagen 1 and Hagen 9, respectively. The results of this study suggested that the P-inefficient genotype Hagen 9 improved with inoculation with mycorrhizal fungi under a low P level at the same conditions of this experiment. Also, root growth system and mycorrhizal hyphae length would be a suitable plant parameter for studying P efficient maize genotypes, especially under limited P supply. The current study clearly pointed out that the mechanistic simulation model (NST 3.0) provides useful tools for studying the role of AMF in P uptake of plant.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call