Abstract

ABSTRACT Peanut kernels are susceptible to colonization by some species of Aspergillus which, under conditions of drought and high temperatures, can produce aflatoxins prior to harvest. The objective of this research was to determine the mechanism by which the peanut root-knot nematode (Meloidogyne arenaria) increases aflatoxin contamination in peanut. Research determined 1) the role of nematode infection of roots vs. pods in increased aflatoxin contamination and 2) whether increased aflatoxin production in nematode-infected peanut is due to a greater percentage of small or immature kernels. An additional objective was to determine whether a peanut cultivar with resistance to M. arenaria would reduce the risk of preharvest aflatoxin contamination. In the greenhouse, researchers physically separated root growth from pod set and inoculated each location with M. arenaria or a water control in a 2 × 2 factorial design with 12–15 replications. Of the six trials conducted, data indicated that pod and root infection by M. arenaria was associated with elevated aflatoxin concentrations in one and three trials, respectively. This suggests that root infection by the nematode can increase aflatoxin concentrations in the peanut kernel. Another 2 × 2 factorial experiment was conducted with two peanut genotypes (Tifguard and TifGP-2) and two nematode treatments (with and without M. arenaria) with six replications. The cultivar Tifguard is resistant to M. arenaria and TifGP-2 is susceptible. The experiment was carried out in 24 field microplots equipped with a rainout shelter. The experiment was conducted five times from 2006 to 2010. Infection of TifGP-2 by M. arenaria did not lead to greater percentages of small kernels. In only one year (2007), nematodes appeared to increase the percentage of damaged kernels, though aflatoxin concentrations were not affected by nematodes in that year. In the rainout shelter experiment, 2006 was the only year where nematode infection of peanut increased aflatoxin concentrations. In that year, there were lower aflatoxin concentrations in the nematode-resistant cultivar Tifguard than the susceptible germplasm TifGP-2 (12 vs. 136 ng/g).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.