Abstract

We investigated theoretically and experimentally the role of Rho kinase (RhoK) in Ca(2+)-contraction coupling in rat airways. Isometric contraction was measured on tracheal, extrapulmonary and intrapulmonary bronchial rings. Intracellular [Ca(2+)] was recorded in freshly isolated tracheal myocytes. Stimulation by carbachol (0.3 and 10 μm) and 50 mm external KCl induced a short-time, Hill-shaped contraction obtained within 90 s, followed by a sustained or an additional delayed contraction. Responses of [Ca(2+)](i) to acetylcholine consisted in a fast peak followed by a plateau and, in 42% of the cells, superimposed Ca(2+) oscillations. The RhoK inhibitor Y27632 (10 μm) did not alter the [Ca(2+)](i) response. Whatever the agonist, Y27632 did not modify the basal tension but decreased the amplitude of the short-duration response, without altering the additional delayed contraction. The Myosin Light Chain Phosphatase (MLCP) inhibitor calyculin A increased the basal tension and abolished the effect of RhoK. KN93 (Ca(2+)-calmodulin-dependent protein kinase II inhibitor) and DIDS (inhibitor of Ca(2+)-activated Cl(-) channels) had no influence on the RhoK effect. We built a theoretical model of Ca(2+)-dependent active/inactive RhoK ratio and subsequent RhoK-dependent MLCP inactivation, which was further coupled with a four-state model of the contractile apparatus and Ca(2+)-dependent MLCK activation. The model explains the time course of the short-duration contraction and the role of RhoK by Ca(2+)-dependent activation of MLCK and RhoK, which inactivates MLCP. Oscillatory and non-oscillatory [Ca(2+)](i) responses result in a non-oscillatory contraction, the amplitude of which is encoded by the plateau value and oscillation frequency. In conclusion, Ca(2+)-dependent but CaMK II-independent RhoK activation contributes to the early phase of the contractile response via MLCP inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.