Abstract

Magnesium isotopes are a useful tool for constraining the origin of basalts with EM-like isotopic signatures in relation to ancient subducted slabs and recycled materials incorporated in mantle plumes. In this study, we present new SrNdPbHf and Mg isotopic data that were used to determine the origin of the basalt on Hainan Island and investigate the EM mantle reservoir beneath the island. Cenozoic basalts from northern Hainan Island are mainly tholeiitic, with a small amount of alkaline basalts. The Hainan basalts exhibited depleted SrNd isotopic compositions and EM2-like Pb isotopic signatures. The δ26Mg values of the Hainan basalts ranged from −0.40‰ to −0.28‰. The origin of the low δ26Mg signature can be attributed to carbonate sediments from recycled oceanic slab. Hainan basalts show a negative concave curve relationship between 87Sr/86Sr and εNd values, a positive relationship between 206Pb/204Pb and 207Pb/204Pb values and exhibit an evolution trend from depleted mantle towards marine sediments. This indicates that Hainan Island basalts can be explained by the mixing between depleted mantle and marine sediments. Most Hainan basalts have higher K/U × 10−3 and Ba/Th ratios than primitive mantle (K/U × 10−3 ≈ 11.8, Ba/Th ≈ 83), moreover, display highly correlated K/U × 10−3 and Ba/Th compositions with low-pressure (6–8 GPa) carbonated melt released from initial sediments. Therefore, we speculate that the primitive mantle peridotite, coupled with the low-pressure carbonated melt, ultimately became the mantle source of Hainan Island basalts.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call