Abstract

The role of protein kinase C (PKC) in endothelin-1 (ET-1)-induced proliferation of human myometrial cells was investigated. ET-1 dose dependently stimulated DNA synthesis and the number of cultured myometrial cells. Inhibition of PKC by calphostin C or Ro-31-8220 or downregulation of PKC eliminated the proliferative effects of ET-1. The failure of two protein tyrosine kinase (PTK) inhibitors (tyrphostin 51 and tyrphostin 23) to affect ET-1-induced proliferation supports the hypothesis of noninvolvement of the tyrosine kinase signaling pathway in this process. The expression and distribution of PKC isoforms were examined by Western blot analysis. The five PKC isoforms (PKC-alpha, -beta1, -beta2, -zeta, -epsilon) evidenced in human myometrial tissue were found to be differentially expressed in myometrial cells, with a predominant expression of PKC-alpha and PKC-zeta. Treatment with phorbol 12, 13-dibutyrate (PDBu) resulted in the translocation of all five isoforms to the particulate fraction, whereas ET-1 induced a selective increase in particulate PKC-beta1, PKC-beta2, and PKC-epsilon. Our findings that multiple PKC isoforms are differentially responsive to ET-1 or PDBu suggest that they play distinct roles in the myometrial growth process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.