Abstract

The contribution of prostaglandins (PGs) to exercise hyperaemia is controversial. In this review, we argue this is partly explained by differences in exercise intensity between studies. The effects of cyclooxygenase (COX) inhibition and PG assays indicate that PGs contribute more at moderate to heavy than at light workloads and are mainly released by low tissue O2 . But, the release and actions of PGs also depend on other O2 -dependent dilators including ATP, adenosine and NO. K+ may inhibit the action of PGs and other mediators by causing hyperpolarization, but contributes to the hyperaemia. Thus, at lighter loads, the influence of PGs may be blunted by K+ , while COX inhibition leads to compensatory increases in other O2 -dependent dilators. In addition, we show that other sources of variability are sex and ethnicity. Our findings indicate that exercise hyperaemia following rhythmic contractions at 60% maximum voluntary contraction, is smaller in young black African (BA) men and women than in their white European (WE) counterparts, but larger in men than in women of both ethnicities. We propose the larger absolute force in men causes greater vascular occlusion and accumulation of dilators, while blunted hyperaemia in BAs may reflect lower oxidative capacity and O2 requirement. Nevertheless, COX inhibition attenuated peak hyperaemia by ∼30% in WE, BA men and WE women, indicating PGs make a substantial contribution in all three groups. There was no effect in BA women. Lack of PG involvement may provide early evidence of endothelial dysfunction, consistent in BA women with their greater risk of cardiovascular disease.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call