Abstract

Accumulated evidence indicates that platelet-derived growth factor (PDGF) contributes to various types of tissue regeneration. However, the effects and mechanisms of PDGF signaling for retina regeneration have not been sufficiently investigated. To clarify this, we investigated the role of PDGF signaling in retina regeneration process after needle puncture in zebrafish. Time-course analysis showed a spike peak of pdgf-a at 6 h after injury and a broad peak of pdgf-b during 6–96 h after injury. Inhibition of PDGF signaling with AG1295 suppressed BrdU-positive proliferative cell numbers at 4 days after injury. At the same time, retina regeneration-associated transcription factors, ascl1a and pax6b, were down-regulated by AG1295 treatment. Intravitreal injection of human recombinant PDGF-AA or -BB into intact zebrafish induced the cell proliferation. PDGF-BB injection induced the Müller glia-derived neurogenic cluster; PDGF-AA increased the 4C4-positive microglia. These findings indicate that PDGF signaling contributes to retina regeneration in zebrafish and causes different types of cell proliferation, depending on each subtype of PDGF. (160 words)

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call