Abstract
Angiotensin II stimulation increases the formation of reactive oxygen species (ROS), the phosphorylation of p38 mitogen-activated protein kinase (MAPK), and the expression of transforming growth factor beta (TGFbeta) in adult cardiomyocytes. The aim of this study was to determine the involvement of PI 3-kinase and to specify the participation of different isoforms in the angiotensin II-induced formation of ROS in comparison to the hypertrophic pathway triggered by alpha-adrenoceptor stimulation. Freshly isolated myocytes were used to examine formation of ROS via H(2)DCF fluorescence. p38 MAPK phosphorylation, p70(S6)-kinase phosphorylation, PI 3-kinase, and TGFbeta expression were measured by Western blotting. Sense and antisense oligonucleotides were used to down-regulate diverse PI 3-kinase isoforms. Hypertrophy was measured by (14)C-phenylalanine incorporation and cell volume. Inhibition of PI 3-kinase by Ly294002 or wortmannin, two inhibitors, decreased formation of ROS, phosphorylation of p38 MAPK, and TGFbeta expression. Down-regulation of the p110beta isoform by antisense oligonucleotides inhibited the angiotensin II-induced signalling pathway but not the alpha-adrenoceptor-mediated hypertrophic growth of cardiomyocytes. In contrast, down-regulation of the p110alpha isoform decreased the alpha-adrenoceptor-mediated hypertrophic growth of cardiomyocytes but did not affect the angiotensin II-mediated signalling pathway. Thus, our study identifies an involvement of PI 3-kinase in the angiotensin II-induced formation of ROS and provides a biochemical basis for ligand-specific responses for angiotensin II and alpha-adrenoceptor stimulation as relates to hypertrophy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.