Abstract
This study was designed to examine the contribution of oxidative stress in gastrointestinal disorders after an intraperitoneal administration of 5 fluorouracil (5-FU; 100 mg/kg of body weight (b.w.)) and capecitabine oral administration (500 mg/kg b.w.). The animals were divided into three groups: Group A (NaCl,10 ml/kg of b.w.) considered as control group, group B was intoxicated by 5-FU and group C was the group of animals treated with capecitabine (CAP). To evaluate the secretory and enteropooling effects, we used magnesium sulfate (MgSO4), 1 ml/100 g of b.w. as a hypersecretion agent . The mucosal gastro-intestinal specimens were scraped and examined for biological markers of oxidative stress and intracellular mediators. These anticancer drugs caused many intestinal damages manifested by an elevation of fluid accumulation and imbalance in electrolytes secretion. The intestinal tissues from treated rats not only showed a significant increase in malondialdehyde (MDA), protein carbonylation and hydrogen peroxide (H2O2) production. but also showed a significant depletion of enzymatic and non-enzymatic antioxidant, such as, glutathione peroxidase (GPx), superoxide dismutase (SOD), catalase (CAT) and sulfhydryl groups (-SH). These effects were related with histopathological damage and a perturbation of intracellular mediators. As expected, these disturbances were observed in the group of rats poisoned by the MgSO4. Data suggest the contribution of oxidative stress in chemotherapy-induced many disorders in intestinal tract.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.