Abstract

BackgroundCytomegalovirus (CMV) is the major opportunistic virus encountered after transplantation, and resistant variants challenge antiviral treatment. We studied the emergence and evolution of the canonical UL97 L595S mutation in four kidney recipients by comparing Sanger sequencing with a specific next-generation sequencing (NGS) assay, and assessed the global evolution of UL97 gene variability. Study designPlasmids harbouring wild-type and/or L595S mutated UL97 genes were used to assess the analytical performances of NGS assay. UL97 gene was retrospectively analysed in patients’ samples drawn during CMV infection follow-up, Shannon entropy (Sn) was calculated and phylogenetic analyses were performed. ResultsWild-type and L595S plasmids PCR products were mixed to obtain L595S concentrations of 0, 1, 2, 5, 10, 20 and 100%. Mean triplicate NGS results were 0, 0.71, 1.79, 5.30, 13.17, 17 and 100%, respectively, while Sanger sequencing only detected L595S when above 20%. The NGS mean error rate was 0.196±0.07%. In the four patients, emergence of L595S mutation under ganciclovir treatment was followed-up. After foscarnet rescue therapy, leading to undetectable CMV viral load, in two patients, L595S mutant re-emerged, but was only detected by NGS technology (14% and 9.6%). Using NGS data, phylogenetic trees and Sn showed a complex evolution of concomitant viral subpopulations. ConclusionsNGS technology allowed a deeper discrimination of the emergence and persistence of a drug resistance mutation, which could be pertinent to investigate when routine Sanger sequencing detects only wild-type strains. Moreover, NGS improved sensitivity helps in studying viral abundance, dynamics and diversity, less approachable with Sanger sequencing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.