Abstract

We investigated how the N-methyl-DL-aspartic acid (NMDA) receptor contributes to generating oscillatory potentials (OPs) of the electroretinogram (ERG) in the Royal College of Surgeons (RCS) rat. Scotopic ERGs were recorded from dystrophic and wild-type congenic (WT) RCS rats (n=20 of each) at 25, 30, 35, and 40days of age. The stimulus intensity was increased from -2.82 to 0.71 log cd-s/m(2) to obtain intensity-response function. NMDA was injected into the vitreous cavity of the right eyes. The left eyes were injected with saline as controls. The P3 obtained by a-wave fitting was digitally subtracted from the scotopic ERG to isolate the P2. For the OPs, the P2 was digitally filtered between 65 and 500Hz. The amplitudes of OP1, OP2, OP3, and OP4 were then measured and summed and designated as ΣOPs. The implicit times of OP1, OP2, and OP3 were also measured. The frequency spectra of the OPs were analyzed using fast Fourier transform (FFT). The maximum ERG a- and b-waves as well as ΣOPs amplitudes reduced with age in dystrophic rats. Compared with intravitreal saline injection, administration of NMDA decreased ΣOPs amplitudes from 30days of age in dystrophic rats, while it did not attenuate ΣOPs amplitudes in WT rats. The implicit times of the OPs of the maximum ERG were prolonged by NMDA injections in WT and dystrophic rats. NMDA/saline ratios of ΣOPs amplitudes area under the FFT curves were significantly lower in dystrophic rats from 30days of age than that in WT rats. In the early stage of photoreceptor degeneration, intravitreal NMDA injection attenuated OPs amplitudes in dystrophic rats. This indicates that NMDA receptors play a significant role in generating OPs amplitudes with advancing photoreceptor degeneration.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call