Abstract

Mitral annular (MA) excursion during diastole encompasses a volume that is part of total left ventricular (LV) filling volume (LVFV). Altered excursion or area variation of the MA due to changes in preload or inotropic state could affect LV filling. We hypothesized that changes in LV preload and inotropic state would not alter the contribution of MA dynamics to LVFV. Six sheep underwent marker implantation in the LV wall and around the MA. After 7-10 days, biplane fluoroscopy was used to obtain three-dimensional marker dynamics from sedated, closed-chest animals during control conditions, inotropic augmentation with calcium (Ca), preload reduction with nitroprusside (N), and vena caval occlusion (VCO). The contribution of MA dynamics to total LVFV was assessed using volume estimates based on multiple tetrahedra defined by the three-dimensional marker positions. Neither the absolute nor the relative contribution of MA dynamics to LVFV changed with Ca or N, although MA area decreased (Ca, P < 0.01; and N, P < 0.05) and excursion increased (Ca, P < 0.01). During VCO, the absolute contribution of MA dynamics to LVFV decreased (P < 0.001), based on a reduction in both area (P < 0.001) and excursion (P < 0.01), but the relative contribution to LVFV increased from 18 +/- 4 to 45 +/- 13% (P < 0.001). Thus MA dynamics contribute substantially to LV diastolic filling. Although MA excursion and mean area change with moderate preload reduction and inotropic augmentation, the contribution of MA dynamics to total LVFV is constant with sizeable magnitude. With marked preload reduction (VCO), the contribution of MA dynamics to LVFV becomes even more important.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.