Abstract

The importance of oxidative stress in the development of alcoholic liver disease has long been appreciated. The mechanism by which ethanol triggers an increase in reactive oxygen species in the liver is complex, however, recent findings suggest that the mitochondrion may contribute significantly to the overall increase in oxidant levels in hepatocytes exposed to ethanol acutely or chronically. This review is focused on observations which indicate that the ability of ethanol to increase mitochondrial reactive oxygen species production is linked to its metabolism via oxidative processes and/or ethanol-related alterations to the mitochondrial electron transport chain. Furthermore, the capacity of ethanol-elicited increases in reactive oxygen species to oxidatively modify and inactivate mitochondrial proteins is highlighted as a mechanism by which ethanol might further disrupt the structure and function of mitochondria.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.