Abstract

An Al–7% Si alloy was severely deformed by equal channel angular pressing to study the refinement of the microstructure and associated changes of mechanical properties. The initial coarse dendritic structure was broken into an elongated submicron grain/subgrain structure, with a high dislocation density and distributed fine Si particles. The Si particles in the composite are seen to induce a high dislocation density during deformation and lead to faster structural refinement than in a monolithic alloy with the same composition as the matrix. The additional strengthening of the composite relative to the monolithic alloy is due to both the finer grain size and the high retained dislocation density. Severe plastic deformation also leads to an improvement in the ductility of the strong material due to the refinement of both the matrix microstructure and the Si particles.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.