Abstract

Severe air pollution events accompanied by high PM2.5 concentrations have been repeatedly observed in Middle-Eastern China since 2013 and decreased in recent years. The reason for this caused widespread attention. The month of January was selected to represent the winter season annual changes in the winter PM2.5 and meteorological conditions—including the upper-air meridional circulation index (MCI), winds at 700 and 850 hPa levels and surface meteorology—from 2013 to 2019. These conditions were analyzed to study the contribution of meteorology changing to the annual PM2.5 changing on the regional scale. Results show that, based on values of upper-level MCI, the years 2014, 2015, 2017, and 2019 were defined as meteorology-haze years and the years 2016 and 2018 were defined as meteorology-clean years. A change in meteorological conditions may lead to a 26% change in PM2.5 concentration between 2014 and 2013 (two meteorology-haze years) and 16–20% changes in PM2.5 concentration between meteorology-haze years and meteorology-clean years. Changes in pollutant emissions may cause 21–47% changes in PM2.5 concentration between each two meteorology-haze years. A comparison of two meteorology-clean years and pollutant emissions in 2018 may be reduced by 40% compared with 2016. Overall, changes in emissions had a greater influence on changes in PM2.5 compared with meteorological conditions.

Highlights

  • Fine particulate matter with an aerodynamic diameter

  • A day is defined as an air pollution day based on the NAAQS if the 24-h average PM2.5 concentration is >75.0 μg m−3 (Table 1)

  • relative humidity (RH) and temperature were investigated to study the contribution of meteorology changing yearly and PM2.5 changing on the regional and city scale

Read more

Summary

Introduction

Fine particulate matter with an aerodynamic diameter

Methods
Results
Discussion
Conclusion

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.