Abstract

Macrophages form one of the first lines of defense on mucosal surfaces like urinary tract, providing protection against pathogens. These cells pour their secretory products, which include a cocktail of biomolecules, at the site of infection. In the present investigation, the effect of macrophage secretory products (MSPs) obtained after interaction of macrophages with Pseudomonas aeruginosa on the virulence of this organism in planktonic and biofilm cell mode was assessed employing a mouse model of ascending pyelonephritis. When urinary tract infection (UTI) was established with P. aeruginosa grown in the presence of 30% MSPs, the extent of pyelonephritis was enhanced. Of the two cell forms, biofilm cells had an edge over the planktonic cells with respect to in vivo virulence. The enhanced virulence of MSP-grown P. aeruginosa may be attributed to increased production of quorum-sensing systems as well as increased adherence to uroepithelial cells and evasion of phagocytosis. The results of the present study reveal that macrophages can play a key role during the course of UTI, not only through their phagocytic activity, but also through effects mediated by their secretory products. Utilization of MSPs by P. aeruginosa can have far-reaching consequences, including chronicity and recurrence of infections caused by this pathogen.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.