Abstract

BackgroundIn a subgroup of patients suffering from progressive multiple sclerosis (MS), which is an inflammation-mediated neurodegenerative disease of the central nervous system (CNS), B cell aggregates were discovered within the meninges. Occurrence of these structures was associated with a more severe disease course and cortical histopathology. We have developed the B cell-dependent MP4-induced experimental autoimmune encephalomyelitis (EAE) as a mouse model to mimic this trait of the human disease. The aim of this study was to determine a potential role of lymphoid tissue inducer (LTi) and TH17 cells in the process of B cell aggregate formation in the MP4 model.MethodsWe performed flow cytometry of cerebellar and splenic tissue of MP4-immunized mice in the acute and chronic stage of the disease to analyze the presence of CD3−CD5−CD4+RORγt+ LTi and CD3+CD5+CD4+RORγt+ TH17 cells. Myelin oligodendrocyte glycoprotein (MOG):35–55-induced EAE was used as B cell-independent control model. We further determined the gene expression profile of B cell aggregates using laser capture microdissection, followed by RNA sequencing.ResultsWhile we were able to detect LTi cells in the embryonic spleen and adult intestine, which served as positive controls, there was no evidence for the existence of such a population in acute or chronic EAE in neither of the two models. Yet, we detected CD3−CD5−CD4−RORγt+ innate lymphoid cells (ILCs) and TH17 cells in the CNS, the latter especially in the chronic stage of MP4-induced EAE. Moreover, we observed a unique gene signature in CNS B cell aggregates compared to draining lymph nodes of MP4-immunized mice and to cerebellum as well as draining lymph nodes of mice with MOG:35–55-induced EAE.ConclusionThe absence of LTi cells in the cerebellum suggests that other cells might take over the function as an initiator of lymphoid tissue formation in the CNS. Overall, the development of ectopic lymphoid organs is a complex process based on an interplay between several molecules and signals. Here, we propose some potential candidates, which might be involved in the formation of B cell aggregates in the CNS of MP4-immunized mice.

Highlights

  • In a subgroup of patients suffering from progressive multiple sclerosis (MS), which is an inflammationmediated neurodegenerative disease of the central nervous system (CNS), B cell aggregates were discovered within the meninges

  • lymphoid tissue inducer (LTi) cells are absent in the cerebellum of EAE mice For flow cytometry experiments of the cerebellum and spleen, ten mice in each group (11 for the chronic stage of MP4-induced EAE) were divided into two cohorts and the tissues for each cohort were pooled

  • For analyzing the infiltrating immune cells within the CNS, we focused on the cerebellum, because in previous studies, we could confirm the presence of infiltrates in the cerebellum of both mouse models and the preferential formation of B cell aggregates in MP4-induced EAE in this brain region [10, 11]

Read more

Summary

Introduction

In a subgroup of patients suffering from progressive multiple sclerosis (MS), which is an inflammationmediated neurodegenerative disease of the central nervous system (CNS), B cell aggregates were discovered within the meninges. Serafini and colleagues detected a small amount of CD3–RORγt+ cells, potentially ILC3/LTi cells, in B cell aggregates/follicles and adjacent diffuse meningeal infiltrates in secondary progressive MS patients [24] Another cell population, which has been associated with ectopic lymphoid tissue formation, is TH17 cells. One focus of our study was to investigate the role of LTi and TH17 cells in ectopic lymphoid tissue formation in the CNS of MP4-immunized mice. Besides these two cell populations, it is conceivable that several other factors are necessary to support the highly complex structure of a TLO. To determine potential other candidate molecules relevant to TLO formation and maintenance, we studied the gene expression profile of B cell aggregates

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call