Abstract

Introducing periodic Ag gratings in the rear side of thin-film silicon excites localized surface plasmon (LSP) and Fabry-Perot (FP) effect. These two effects as well as an intrinsic one pass through absorption overlay together and all contribute to the light absorption in silicon. On the basis of electromagnetic field’s linear superposition, the absorptivity caused by LSP effect is separated from the overall absorptivity of a 500-nm-thick silicon and quantized by short current density. Finite difference time domain (FDTD) calculations were performed to obtain the absorptivity of silicon with different Ag grating parameters. The contribution of LSP effect to the light absorption is evaluated by photocurrent ratio and investigated under different Ag grating parameters. It is found that, as LSP effect is excited most intensively, the light absorption of silicon will also be enhanced extremely. By careful design, the overall short current density of silicon is optimized up to 25.4 mA/cm2, where the contribution of LSP effect accounts for 38.6 %. Comparing to 14.5 mA/cm2 for a reference silicon stack, it increases up to almost 75 %. These results may give design suggestions in implementation of plasmonic solar cell as high efficiency devices.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.