Abstract
ObjectiveClinical evidence suggests that abnormal mechanical forces play a major role in the initiation and progression of osteoarthritis (OA). However, few studies have examined the mechanical environment that leads to disease. Thus, using a mouse tibial loading model, we quantified the cartilage contact stresses and examined the effects of altering tissue material properties on joint stresses during loading. DesignUsing a discrete element model (DEA) in conjunction with joint kinematics data from a murine knee joint compression model, the magnitude and distribution of contact stresses in the tibial cartilage during joint loading were quantified at levels ranging from 0 to 9 N in 1 N increments. In addition, a simplified finite element (FEA) contact model was developed to simulate the knee joint, and parametric analyses were conducted to investigate the effects of altering bone and cartilage material properties on joint stresses during compressive loading. ResultsAs loading increased, the peak contact pressures were sufficient to induce fibrillations on the cartilage surfaces. The computed areas of peak contact pressures correlated with experimentally defined areas of highest cartilage damage. Only alterations in cartilage properties and geometry caused large changes in cartilage contact pressures. However, changes in both bone and cartilage material properties resulted in significant changes in stresses induced in the bone during compressive loading. ConclusionsThe level of mechanical stress induced by compressive tibial loading directly correlated with areas of biological change observed in the mouse knee joint. These results, taken together with the parametric analyses, are the first to demonstrate both experimentally and computationally that the tibial loading model is a useful preclinical platform with which to predict and study the effects of modulating bone and/or cartilage properties on attenuating OA progression. Given the direct correlation between computational modeling and experimental results, the effects of tissue-modifying treatments may be predicted prior to in vivo experimentation, allowing for novel therapeutics to be developed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.