Abstract

Changes in the local environment around amide groups of poly(N-isopropylacrylamide) (PNiPA) during a solvent-induced reentrant phase separation have been investigated by infrared spectroscopy combined with quantum chemical calculations. The addition of methanol or tetrahydrofuran as a cosolvent to an aqueous solution of PNiPA causes spectral changes in the amide I regions. By preparing a dimer model compound for PNiPA, we can establish the assignment of the amide I bands for the polymer in solutions. Hydrogen-deuterium exchange experiments of the amide protons of PNiPA and its dimer models have revealed that the amide groups of PNiPA form an intramolecular C=O...H-N hydrogen bond even in a good solvent. The result has suggested that the change in the amide I envelope of PNiPA observed during the solvent-induced phase transition reflects the modification of the intramolecular C=O...H-N hydrogen bond of PNiPA as well as the variation in solvation state of the amide groups. On the basis of the assignment, we have discussed contributions of the intramolecular C=O...H-N hydrogen bond to the phase behavior of PNiPA.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.