Abstract

Water incorporation in forsterite samples synthesized under low to medium silica-activity conditions mostly occurs via a substitutional mechanism in which a Si vacancy is compensated by four protons. Corresponding IR absorption spectra display a cluster of narrow and weakly anharmonic OH-stretching bands at wavenumbers above 3,500 cm−1. However, this diagnostic spectrum is often superimposed to one broader absorption band, rarely two, displaying pronounced temperature-dependent properties and tentatively assigned to H atoms in interstitial position (Ingrin et al. in Phys Chem Miner 40:499–510, 2013). Here, we investigate the structural and vibrational properties of selected interstitial H-bearing defects in forsterite using a first-principles modeling approach. We show that the broad bands discussed by Ingrin et al. (Phys Chem Miner 40:499–510, 2013) are most likely related to interstitial OH groups in the vacant octahedral sites alternating with the M2 sites along the c axis of the forsterite structure. The corresponding OH defects lead to the formation of fivefold coordinated Si species. Their peculiar thermal properties stem from the vibrational phase relaxation due to the anharmonic coupling of the high-energy local OH-stretching mode with a low-energy vibrational mode. This “exchange mode” corresponds to the hindered longitudinal translation of the OH group. These results suggest that at high pressure, hydrogen incorporation in forsterite is dominated by coexisting interstitial OH groups and (4H)Si defects.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.