Abstract

The perception of environmental stimuli is mediated through a diverse group of first-order sensory relay interneurons located in stereotypic positions along the dorsoventral (DV) axis of the neural tube. These interneurons form contiguous columns along the anteroposterior (AP) axis. Like neural crest cells and motoneurons, first-order sensory relay interneurons also require specification along the AP axis. Hox genes are prime candidates for providing this information. In support of this hypothesis, we show that distinct combinations of Hox genes in rhombomeres (r) 4 and 5 of the hindbrain are required for the generation of precursors for visceral sensory interneurons. As Hoxa2 is the only Hox gene expressed in the anterior hindbrain (r2), disruption of this gene allowed us to also demonstrate that the precursors for somatic sensory interneurons are under the control of Hox genes. Surprisingly, the Hox genes examined are not required for the generation of proprioceptive sensory interneurons. Furthermore, the persistence of some normal rhombomere characteristics in Hox mutant embryos suggests that the loss of visceral and somatic sensory interneurons cannot be explained solely by changes in rhombomere identity. Hox genes may thus directly regulate the specification of distinct first-order sensory relay interneurons within individual rhombomeres. More generally, these findings contribute to our understanding of how Hox genes specifically control cellular diversity in the developing organism

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call