Abstract

The photosynthetic alphaproteobacterium Rhodobacter sphaeroides has to cope with photooxidative stress that is caused by the bacteriochlorophyll a-mediated formation of singlet oxygen ((1)O(2)). Exposure to (1)O(2) induces the alternative sigma factors RpoE and RpoH(II) which then promote transcription of photooxidative stress-related genes, including small RNAs (sRNAs). The ubiquitous RNA chaperone Hfq is well established to interact with and facilitate the base-pairing of sRNAs and target mRNAs to influence mRNA stability and/or translation. Here we report on the pleiotropic phenotype of a Δhfq mutant of R. sphaeroides, which is less pigmented, produces minicells and is more sensitive to (1)O(2). The higher (1)O(2) sensitivity of the Δhfq mutant is paralleled by a reduced RpoE activity and a disordered induction of RpoH(II)-dependent genes. We used co-immunoprecipitation of FLAG-tagged Hfq combined with RNA-seq to identify association of at least 25 sRNAs and of mRNAs encoding cell division proteins and ribosomal proteins with Hfq. Remarkably, > 70% of the Hfq-bound sRNAs are (1)O(2)-affected. Proteomics analysis of the Hfq-deficient strain revealed an impact of Hfq on amino acid transport and metabolic functions. Our data demonstrate for the first time an involvement of Hfq in regulation of photosynthesis genes and in the photooxidative stress response.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.