Abstract
Endothelial nitric oxide synthase (eNOS) is critical for intestinal microcirculatory perfusion and therefore plays a key role in the development of necrotizing enterocolitis (NEC). eNOS-derived nitric oxide (NO) is inhibited by S-glutathionylation of eNOS (eNOS-SSG), which can be reversed by glutaredoxin-1 (Grx1). Therefore, the objective of this study was to investigate the interplay between Grx1 and eNOS in regulating the following inflammation signal during the development of NEC. Primary mouse intestinal microvascular endothelial cells (MIMECs) and peritoneal macrophages were subjected to lipopolysaccharide treatment, and Grx1-/- mice were subjected to an NEC-inducing regimen of formula feeding in combination with hypoxia and hypothermia. The eNOS-SSG level and its activity were assessed using immunoprecipitated assay and NO production evaluation. NO-mediated Toll-like receptor 4 (TLR4) signaling and inflammation injury were further defined. NEC severity was significantly increased in Grx1-/- mice. Grx1-/- mice with NEC showed significantly decreased NO and increased O2•- production with increases in eNOS-SSG. Furthermore, TLR4 signaling, which is required for the development of NEC, was enhanced in the Grx1-deficient mice. These results suggest that eNOS-SSG within the MIMECs inhibited NO production and enhanced TLR4 activity, which were implicated in the pathogenesis of NEC. Grx1 deficiency increases the severity of NEC in association with eNOS-SSG.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.