Abstract
AbstractA model, incorporating both gas-phase and surface reactions, for simulating thickness profile of SiC, deposited from trichloromethylsilane (TMS), along the longitudinal direction of a single pore is presented in this paper. The transport mechanisms considered include both forced-flow and diffusion. With the nonlinear nature of this model, a finite element model was developed to solve the problem numerically. Simulation results were in good agreement with the reported experimental data by Fedou et al. (1990). Effects of critical parameters, such as deposition temperature, ratio of sticking coefficients of TMS and intermediate species, and forced-flow, on the deposition thickness profile were investigated. Forced-flow effect was found to be small for the chemical vapor infiltration (CVI) processes at high deposition temperatures.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.