Abstract

The involvement of FSH and triiodothyronine (T(3)) in circadian clocks was investigated using immature granulosa cells of ovaries during the progress of cell maturation. Granulosa cells were prepared from preantral follicles of mouse Period2 (Per2)-dLuc reporter gene transgenic rats injected subcutaneously with the synthetic nonsteroidal estrogen diethylstilbestrol. Analysis of the cellular clock of the immature granulosa cells was performed partly using a serum-free culture system. Several bioluminescence oscillations of Per2-dLuc promoter activity were generated in the presence of FSH + fetal bovine serum, but not in the presence of either FSH or serum. As revealed by bioluminescence recording and analysis of clock gene expression, the granulosa cells lack the functional cellular clock at the immature stage, although Lhr was greatly expressed during the period of cell maturation. The granulosa cells gained a strong circadian rhythm of bioluminescence during stimulation with FSH, whereas LH reset the cellular clock of matured granulosa cells. During strong circadian rhythms of clock genes, the Star gene showed significant expression in matured granulosa cells. In contrast, T(3) showed an inhibitory effect on the development of the functional cellular clock during the period of cell maturation. These results indicate that FSH provides a cue for the development of the functional cellular clock of the immature granulosa cells, and T(3) blocks the development of the cellular clock.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.