Abstract

Fine root (<2 mm) processes contribute to and exhibit control over a large pool of labile carbon (C) in boreal forest ecosystems because of the high proportion of C allocated to fine root net primary production (NPP), and the rapid decomposition of fine roots relative to aboveground counterparts. The objective of this study was to determine the contribution of fine roots to ecosystem biomass and NPP in a mature black spruce ( Picea mariana Mill.) (OBS), aspen ( Populus tremuloides Michx.) (OA), and jack pine ( Pinus banksiana Lamb.) (OJP) stand, and an 11-year-old harvested jack pine (HJP) stand in Saskatchewan. Estimates of fine root biomass and NPP were obtained from nine minirhizotron (MR) tubes at each of the four Boreal Ecosystem Research and Monitoring Sites (BERMS). Fine root data were collected once a month for May–September in 2003 and 2004. Additional C biomass and NPP data for various components of the forest stands were obtained from Gower et al. (1997) and Howard et al. (2004). Annual fine root biomass averaged 3.10 ± 0.89, 1.71 ± 0.49, 1.62 ± 0.32, and 2.96 ± 0.67 Mg C ha −1 (means ± S.D.) at OBS, OA, OJP, and HJP, respectively, comprising between 1 and 6% of total stand biomass. Annual fine root NPP averaged 2.66 ± 0.97, 2.03 ± 0.43, 1.44 ± 0.43, and 2.16 ± 0.81 Mg C ha −1 year −1 (means ± S.D.) at OBS, OA, OJP, and HJP, respectively, constituting between 41 and 71% of total stand NPP. Results of this study indicate that fine roots produce a large amount of C in boreal forests. It is speculated that fine root NPP may control a large amount of labile C-cycling in boreal forests and that fine root responses to environmental and anthropogenic stress may be an early indicator of impaired ecosystem functioning.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call