Abstract

Because fibroblast filamentous actin (F-actin) influences cutaneous interstitial matrix swelling pressure (5), we investigated whether F-actin in fibroblast-derived synoviocytes influences the hydraulic permeability of the trans-synovial interstitial pathway. The study also tested whether F-actin in fenestrated synovial endothelium contributes to the blood-joint barrier in vivo. The clearance of Evans blue-albumin (EVA) from plasma into the knee joint cavity was determined in joint infused with F-actin disrupting cytochalasin D (1-200 microM), latrunculin B (100 microM) or vehicle in anesthetized rabbits. The hydraulic permeability of the lining was determined as the slope relating net trans-synovial flow Q(s) to intra-articular pressure P(j). Synovium was examined histologically after i.v. Monastral blue to assess endothelial leakiness. EVA permeation in vivo was increased up to 25-fold by cytochalasin (p = 0.0002, ANOVA), with an EC(50) of 23 microM (95% confidence limits 13-43 microM). Washout quickly reversed the increase. Latrunculin had a similar effect. F-actin disruption switched Q(s) from drainage (control) to filtration into the cavity at low P(j) in vivo and raised the conductance Q(s)/dP(j) by 2.13 (p = 0.001, ANOVA). Circulatory arrest abolished these effects. Monastral blue revealed numerous endothelial leaks. F-actin is crucial to the barrier function of fenestrated endothelium in situ. No significant effect of synoviocyte F-actin on matrix permeability was detected.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.