Abstract

The extracellular polymeric substances (EPS) from activated sludge played significant roles in the removal of nanoparticles from wastewater. A series of batch experiments were carried out to determine the adsorption mechanism of three nano-Ag by activated sludge, as well as the contributions of EPS fractions including dissolved EPS (DEPS), loosely bound EPS (LB-EPS) and tightly bound EPS (TB-EPS). The results demonstrated that the adsorption of nano-Ag by sludge biomass agreed with pseudo-second-order kinetic reaction model and Freundlich isotherm model. About 26.0–41.2% of nano-Ag was trapped by the bound EPS (BEPS) matrix of activated sludge (especially LB-EPS) and 42.5–52.6% of them was adsorbed onto the inner cells after the adsorption. Moreover, the interaction energy contributions of EPS fractions followed the order of EDE > 0 > ETB > ELB, suggesting DEPS in wastewater went against the removal of nano-Ag due to steric repulsion while LB-EPS and TB-EPS were positive to nano-Ag adsorption by modifying biomass surface and providing extensive binding sites. Besides, EPS fractions played significant roles in the adsorption of nano-Ag with low initial concentrations but had limited effect at high concentrations. Overall, this study investigated the effect of EPS fractions on the adsorption behaviors of nano-Ag by activated sludge biomass, which is meaningful to understand the removal mechanism of nanoparticles in sewage and the potential role of EPS fractions.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.